Resolvent estimates for elliptic quadratic differential operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolvent Estimates for Elliptic Finite Element Operators in One Dimension

We prove the analyticity (uniform in h ) of the semigroups generated on Lp(0, 1), 1 < p < oo , by finite element analogues Ah of a onedimensional second-order elliptic operator A under Dirichlet boundary conditions. This is accomplished by showing the appropriate estimates for the resolvents by means of energy arguments. The results are applied to prove stability and optimal-order error bounds ...

متن کامل

Resolvent estimates of elliptic differential and finite-element operators in pairs of function spaces

We present some resolvent estimates of elliptic differential and finite-element operators in pairs of function spaces, for which the first space in a pair is endowed with stronger norm. In this work we deal with estimates in (Lebesgue, Lebesgue), (Hölder, Lebesgue), and (Hölder, Hölder) pairs of norms. In particular, our results are useful for the stability and error analysis of semidiscrete an...

متن کامل

Maximum-norm Resolvent Estimates for Elliptic Finite Element Operators on Nonquasiuniform Triangulations

In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discrete elliptic operator. In all these cases the triangulations of the spatial domain has been assum...

متن کامل

Resolvent estimates for non-selfadjoint operators with double characteristics

We present recent progress in the understanding of the spectral and subelliptic properties of non-elliptic quadratic operators with application to the study of return to equilibrium for some systems of chains of oscillators. We then explain how these results allow to describe the spectral properties and to give sharp resolvent estimates for some classes of non-selfadjoint pseudodi erential oper...

متن کامل

Semiclassical resolvent estimates for Schrödinger operators with Coulomb singularities

Consider the Schrödinger operator with semiclassical parameter h, in the limit where h goes to zero. When the involved long-range potential is smooth, it is well known that the boundary values of the operator’s resolvent at a positive energy λ are bounded by O(h−1) if and only if the associated Hamilton flow is non-trapping at energy λ. In the present paper, we extend this result to the case wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2013

ISSN: 1948-206X,2157-5045

DOI: 10.2140/apde.2013.6.181